
 Tyler Johnston
 Aidan Monty
 Sam Moon

[Help Me Find!]

Resource Finder

✓ Find a refrigerator to stash your lunch!

✓ Find a microwave to heat it up!

✓ Locate a comfortable, private restroom!

✓ Feed your young child in peace!

Designed to help students, faculty, and campus visitors

locate important resources at UW Madison. Download

the app, choose a resource, and follow the helpful

pointer to your destination.

Style

For visual style of the application, we chose purple and teal as they are used commonly in

themes. The current location is violet to help it stand out against Google’s Places. We played

with different marker visuals, as discussed in Features Left Out. Our compass image has a solid

circle surrounding the arrow to keep the image tolerable to look at, as the arrow itself can

move erratically.

Flow

The flow of the application is linear; a user is guided down a straightforward path

with the option to go back to the resource selection screen at any point. We also

include an administrative site to add resources and view comments from users to

check on resource status.

Activities and Implementation

Welcome Activity →

The welcome screen is our landing page for the app,

designed to visually allude to our app’s purpose. No

work is done and no permissions requests are made

at this point.

 FilterSearch

Activity

Here, users choose what

types of resources to

display and the search

radius distance. These

selections are used to

query the Firestore

database for a list of

resources, which get

passed to MapView.

Location permissions

requests are made here to

get the user’s current

location.

MapView Activity →

The MapView activity displays

the resources of the type(s)

selected within the radius

chosen in FilterSearch. The

radius selected also controls the

zoom on the Map. The

resources and the user’s current

location are displayed as custom

Google Maps markers with their

type above. When a user

selects a resource, the color

changes from red to green and

the bottom navigator adds a

“Select” option.

 Wayfinder Activity

In the Wayfinder Activity, an arrow points towards

the selected resource whose name is displayed at

the top of the user’s screen. When GPS location is

updated the distance from the resource is

displayed below the navigation arrow. Once a user

is within 65 feet of the given resource’s GPS

coordinates the distance text changes to “The

resource should be in the building in front of you!”

By selecting the “Arrived” icon in the bottom

navigator a user is taken to the Feedback activity.

Feedback Activity →

In the Feedback Activity a user is asked to report

whether the resource is inaccessible or

unavailable, with space for explanation. This

feedback can then be used by an administrator on

the website to remove invalid resources from the

database. The user can also add any additional

feedback on the resource in the next text area.

They have the option to either submit feedback or

return to the FilterSearch activity.

Other Elements

Resource Class

 This class was used to define the attributes a Resource should have. These

include a type, a name, latitude and longitude, an address, and a list of strings to

store user’s comments on the given resource.

MapsFragment Fragment & MyMarker subclass

 The MapsFragment is used to display the resources in a Google Maps view

for the MapView activity. The MyMarker subclass is used to create custom map

markers that make it clear to the user what types of resources are around them.

Administrative Site

This is a web-based tool

to allow administrators

to interact with the

Firestore database. Here

an administrator can add

a new resource, decline

or accept new user

comments, and resolve

critical problems on

resources reported by

users. The administrator

can also remove

resources from the

database.

Stuff we did not learn in class

Custom Markers with text/resource title

This application displays custom markers

with the resource type in them. To put

text into something that appears as a

default marker on Google Maps, text

needs to be embedded into an Icon

bitmap and then sent to the marker.

Passing an object in an intent

To pass an object inside of an intent, we had our object implement the

Serializable interface. This allows our activities to send our resource objects to

each other and interact with the getter/setter functions in the Resource Class.

Firestore database and Web interface

The application stores the list of resources on Google’s Firestore database which

can be modified through an admin web interface, also hosted through Firebase.

Both the mobile app and the website make extensive use of adding and querying

documents from the database.

Bearing to destination and Image rotation

This application calculates the bearing (direction towards) a resource from the

current location, using magnetic north, the azimuth (angle from magnetic north

to “true north”), and the latitude and longitude of current location and the

destination. These calculations are then used to rotate an ImageView using

RotateAnimation.

Unique Mobile Features:

The features that make our application uniquely mobile are the use of GPS to

determine current location and the use of the accelerometer and magnetometer.

While GPS location is also available to desktop users, it is difficult to move around

with a desktop or laptop for location-based applications. The accelerometer and

magnetometer have unique behavior in a mobile phone as they allow an

application to determine the direction a phone is pointing and moving in.

Features left out, Reflection, and Questions

Custom Icon Pictures and Cluster Markers (MapView Activity):

While we were able to create custom Icon Pictures for markers to match more closely with the

type of resource, we found that text-based label markers appeared more

readable/understandable in our MapView. For similar reasons, we also chose not to include

Cluster Markers, (where several clustered resources are displayed as a single bubble with the

number of resources as a label until a user zoom in further).

AR:

In our initial design for the application, once a resource was selected on the maps screen, a user

would be taken to an AR activity and would walk towards an AR marker that appears to exist on

the real location in the user’s camera view. Initially, we planned to use Google’s SceneForm to

do this, but found Google has deprecated it. We also tried to use an open-source project called

SceneForm Maintained but had issues running it in our emulator. We tried to display nearby

Place objects in AR utilizing ARCore and Google’s Places API, but this also failed to work. It

seems possible to implement an AR application like our initial proposal given more time, but it

may have been less usable for its purpose than the application we ended up creating.

.csv File Upload:

Due to time constraints, we decided against implementing an option for the administrator to

upload csv files of resources to the database. Instead, the admin can add resources one at a

time through a simple submission form right on the website.

Replacing our Mock Dataset:

Most of our resources in our data storage are mock resources at real locations. For a true

deployment of this app, we would want to have an expansive dataset to work with.

What we might do this differently

The Wayfinder arrow could be replaced with another graphic when the current location is not

available and when a destination is reached. We would still need to find another way to get the

user to move around to acquire location, and we would need to re-add arrow if user moves

away from location without selecting “Arrived,” so we did not implement this.

Questions, answered!

Q) Why use this instead of Google Maps?

A) Following an arrow instead of a series of dots or text directions can be more pleasant for

some users and can lead to finding some interesting shortcuts around campus.

Q) The arrow is “jumpy”: How would you fix this?

A) We could do some smoothing while we interpret the data coming from the sensors, as we

only need to know the “freshest” data and the most recent “smoothed” outcome. We did not

have time to implement this but could do so in a future iteration.

